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1, In inelastic rigid bodies the relation between stress and deformation 

in each moment of the process of deformation inevitably depends on the whole 

sequence of events In this process, or, as one says, on “the loading path”. 

In view of the variety of rheological properties for rigid bodies, it seems 

to be unrealistic to originate a colon theory, covering all possible cases. 

Therefore, in this paper the question will be raised only about the most 

signlflcant version of the theory of complex loading, relating to bodies 

which possess Initial Isotropy and In which forces, resisting plastic drfor- 

mation, do not depend on time. 

With certain Idealizations (see below) such a theory, which obtained the 

name theory of flow Cplasticityf, is suitable for many metals and their 

alloys at moderate temperatures. The Independence of dissipating forces, 

arising from plastic deformation, on time In essence Implies that these for- 

ces are of the nature of dry friction, 

The fundamental feature 

particle 1s that it always 

In a direction opposite to 

mines the tensor structure 

theory of flow and assumes 
& $. 

T’,, ycr. ) 

of the force of friction as it acts on a moving 

acts along the tangent to the trajectory of motion 

the velocity. This property of friction deter- 

of relation between stress and deformation in the 

the form 

(f.41 

*) From a paper trt the. Second All Union Congress of Theoretical and Applied 
Mechanics. 
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Here E! f is the plastic d8fQr~tlon tensor (which in the following will 

be known as the *‘d8viatvrR if WC assume that the body is glastlcally inc0~ 

pressible); Tl, is the tensor {*deviator”) for dissipation foroes of plastic 

resistsnae. Equal&n% (1.1) express the condition of tangency to the tra- 

jectory of the plastic deformation by the dls%ipatSon forces tenaor, while 

resist&g plastic deformation. 

XE we assume that there are no athe~ forces resiathg plastio deformatfon 

except XT,, and that the friction is constant alang the trajectory of defor- 

mation, i.e. what the invariant X - XQ = const, then T,, is neceasarlly 

identified with the stress "deviator" C:, and then (1.1) becomes the most 

element&y theory of Plow-theory of &X&S%. If we retain the assumption that 
the resistance of plastic defo~~t~o~~ is of purely dissipative character, 

but consider that the friction T depends on the posA.tfon of p&&s on the 

trajectory of deformation, then me are lead to the theory of flow with iso- 

tropic hardenirg El]. 

However, it is not 8% all necessary to suppose that the reslstsnce to 

plastic defor~~~on has an entirely dissipabive character, In the process 

of plastic deformation Interai elastic forces of resistance can arise as a 

consequence of its irregularity. We denote the tensor of the external effect 
, of this force by sfl 1 In this case the tensor of forces of dissipation may 

be expressed by Equation 

analogous to Hooke’s law, and that X = X,, we obtain from (1.X) the elemen- 

tary varlent relating ta the translational theory of flow which is sometimes 

known a@ the theory with an ideal &uscMnger effeot. ‘&e last theory may 

be generalized, if we refinqufsh the assumption that T is constt;ant along 

the tr%.jeCtoPy of ~~fQr~~~~~ 12 to 43. As fs obvious, an intuitive repre- 

sentatlon of dfssipative forces , resisting plastic aeformation in the basis 

of the theory of flowr is assumed 8% in the case ai forces of dry friction. 

This firmI% Its mathem:motiCal expression in the rPW2rPment of tangency of the 

tensor of dissipation forces l',, to the trajectory of plastic deformation, 

and also in the requirement of independence of this tensor of the tfme of 

deformation. 

!l!he indicated versions of theory of flow generate the trend in the theory 

of plilstlclty, which should be called the fundamental one, even though, cer- 

tainly, they do net exhaust all the wealth of idea& suggested by different 

authors for description of deformation processes of initially isotropic 

Experimental eviden!nce to test different versions of the theory of flow 
IS very extensive and its data are in general favorable for the theory (see, 
for exampla, [5 and 61)" Even Its ajXmplest versions, a% a rule, Coincide 
satisfactorily with eXperlment%. !kan%lational th8on$8% which take into 
account the Bauschlnger effect, give B noticeable accuracy only tor.es%en- 



tially complex loading paths (for example, for passing around the region of 
elastic deformations or changing the signs of the loadding). However, in dls- 
cussing the coincidence of predictions of theory of flow with experiment 
data, It Is necessary to note that the extent of validity of these assertions 
depends on assumptions with which the plastic deformations are measured (i.e. 
on their smallest value, beginning with which we agree to observe them). 

In this respect the works of Iagn and his followers [7 and 83 are typical, 
In which it was established that for very small assumptions for plasticdefor 
mation (of order 0.001%) not only very simple but even very complex forms 
among the suggested versions of the theory of flow do not give accurate 
representation of the features of plastic deformation, Under these assump- 
tions the boundary of elastic deformations has a complicated form, changing 
essentially in the process of deformation. As the assumption Is extended 
the observed pattern Is beginning to become simpllfled and for assumption 
of order 0.05% come close to the fundamental predictions of versions of the 
theory of flow. For subsequent Increase of assumption again a deviation of 
theor 
fiow r 

from experiment begins to occur. Thus; for example, in the theory of 
and In the theory of plasticity In general) it Is asserted that if, 

beginning with some active loading, unloading and then once again loading 
occurs, then the new flow limit will be that maximum stress o,, which was 
reached in the process of loading. In experiments, however, If we admit large 
assumption (of order 0.2$, which is generally accepted in engineering) we 
find that the yield stress for repeated loading Is somewhat larger than 0,. 
Conversely, If we consider small assumption (of order 0.01% or still smaller), 
then the yield stress for repeated loading Is shown to be below c . There- 
fore, If we speak of a good agreement of theory of flow with experiment 1.t 
Is necessary without fall to add that It occurs only for sufficiently rough 
processing of experimental data. 

Hence, it follows that under the differentials In formulas of flow, as a 
matter of fact, one must Imply finite Increments of deformation of the order 
of such tolerances, from which assumptions lying at the basis of a theory 
are .7ustlfled. The last does not Interfere with the valldltv of the theory 
of flow to predict the general picture of the dependence of the trajectories 
of deformation on the loading trajectories, but it is not able to include 
local effects In the Immediate proximity of sharp changes of the.directlon 
of loading. Insufficient accuracy of the theory of flow In the description 
of quantities, changing rapidly within relatively small changes of plastic 
deformation, probably, Is the main cause of its Inadequacy In connection 
with problems of stability of equilibrium of elastic plastic bodies. As is 
well known [g and lo], for the problem area better coincidence with experi- 
ment Is given by the theory of small plastic deformations. why this is so 
Is difficult to say, but one thing Is evident - there is no reason to be 
astonished by the discrepancy of the flow theory and experiments in the area 
of stability of equilibrium of elastic plastic bodies. 

2. Although In the description of the general picture of plastic defor- 
mation In the theory of flow already has achieved considerable success, 
neverthelees its perfection should be continued as with the goal of further 
approaching theoretical results with experiments In respect to prediction of 
the deformation curve form representation of the loading curve, as in parttcu- 
lar with the purpose of studying microdeformation and microstresses arising 
In bodies from their elastic-plastic deformation. The appearance of these 
mlcrodeformatlons and microstresses depends on microscopic nonhomogeneous 
elastic and olastlc orooerties of oolvcrvstals. and also on the lmoerfections 
In the,structure of iheir crystal lattice points, i.e. dislocations: In the 
theory of elasticity and theory of plasticity stress and deformation are 
usually averaged in the limits of elemental volumes containing sufficiently 
large number of crystal lattice points, and a relation between averaged 
stresses and averaged deformations are established. These stresses and 
deformations in the sequel will be called macroscopic. 

However, for formulation of a law for this relation we cannot avoid to 
deal with microscopic nonhomogeneity of stress and deformation field, since 
the work accomplished by self-equilibrating microstresses In correspondence 
to their microdeformations is comparable with the work of averaged stresses 
on averaged deformations. Particularly typical of this are examples of 
numerous experiments for the measure of heat, evolved during macroscopic 
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homogeneous deformation ([ll and 121 and others). The comparison of the work 
corresponding to this heat with the work expended on the plastic deformation 
shows that the mechanical equivalent of heat evolved Is always appreciably 
zt;zn;han the expended work (by 5 - 8%) depending on magnitude of defor- 

From this It follows that in a homogeneously deformed elastlc- 
plastlc'body after removal of all Its stresses there remains an elastic field 
of deformations and corresponding to It a field of residual stresses, the 
appearance of which may be explained only by microscopic Inhomogeneity of 
mechanical properties of the body. 

To this one should add that for homogeneous macrostresses and macrodefor- 
mations In experiments with specimens beyond the yield stress, there undoubt- 
edly arise not only elastic but also plastic nonhomogeneous mlcrodeformatlons 
which in experiments of the type [ll and 121 are not detected, but for which 
is expended work apparently comparable In magnitude with the work expended 
for elastic residual microdeformations, so that In realty from all the work 
expended on-plastic deformation of the body, probably not less than 10 - 15% 
may be due at the expense of selfequilibrating microstresses and their cor- 
responding mlcrodeformatlons. 

3. Work expended In microdeformations Is found to be comparable with work 

expended In averaged deformations. This property allows the introduction of 

the macroscopic tensor, which Is the statistical characteristic of micro- 

stresses and permits one to consider the Influence of the latter in the rela- 

tionship between macroscopic stresses and deformations. 

We consider a sufficiently small, but finite volume element of a polycrys- 

talline body containing a large number of crystalline lattice points. The 

work required for a change of deformation of this volume element, relative 

to the unity of Its volume, Is expressed by Equation 

dR z d a GijdeijdV 
I (3-l) 

in which the integral Is extended to include all volume of the element. We 

assume stresses and deformations in the form 

(3.2) 

Here c,p and c,: are constant tensors in the limits of the volume ele- 

ment undL.= consideration, they are equal in value to the average stresses 

and deformations 

04 = + ' OijCJ!V, 
1 

&ii = $ E,jdV 
5 (3.3) 

As regards oil* and cl,*, their integrals in the limits of the volume 

element are equal zero 

s 
o$dV = 2J 

s 
’ Elr.dV z 0 (3.4) 

Substituting (3.2) in (3.1) and considering (3.4) we arrive at Equation 

dR = dR” + dR* = a,;de; + +\o;de$dV (3.5) 

In this equation the first term on the right-hand side Is the work of the 

averaged stresses on the Incrementsof averaged deformations, and the second 

is the work of selfequilibrating stresses on the increments of deformations 

corresponding to them. For microlnhomogeneous elastic and plastic properties 
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of bodies the second Integral always differs from zero. We cannot, as was 

already Indicated, neglect It. 

For volu;ne elements containing a sufficiently Large number of crystalline 

lattice points; the work of selfequlllbratlng stresses, relative to unit 

volume a?*‘, should be considered Independent on both the shape and the size 

of the element, I.e. the second term of Equation (3.5), for given (J& ei;, 

and dei: and for given sequence of events In loading, is for every body a 

definite quantity, characterizing Its microstructure. Let us Introduce a 

symmetric macroscopic tensor of the second rank, having measurement dlmen- 

slons of stress, connecting It with di)* by the equality 

(3.6) 

The fundamental property of the given tensor, arising from (3.5) and (j.6), 

consists In that the specific work done by It on increments of macroscopic 

deformations Is equal to the specific work of all mlcrostresses on the micro- 

deformations corresponding to them. Formula (3.6), It Is understood, does 

not determine completely u,f*. However, It shows that such a tensor may be 

Introduced and that It always differs from zero. Below, on the basis of a 

series of physical arguments, are indicated means to its concrete definition. 

Substituting (3.6) Into (3.5) we obtain Equation 

dR = (Uii + u$*) de9 = SijdEii (3.7) 

Thus, In the expression for Increment of speclflc work of deformation of 

polycrystalllne material, along with averaged stresses aUO, there enters 

also the macroscopic tensor au++ which accclints for microstresses. 

4, Let us divide now, as 1s usual, the macroscopic deformation into Its 

dEWtiC and plastic park3 (&ij = Fin + E$. 

Then 

dR = Sii (de; + d&i;) (4-i) 
In accordance with this equation, the stresses S,, applied to volume 

element of the body from outside, overcome the Internal forces resisting 

elastic deformation, as well as those resisting plastic deformation. Since 

S,, do the work In Increments of elastic deformations it follows (If It Is 

assumed that elastic deformations do not depend on the path of.loadlng) that 

Sij = +$ (4.2) 
ij 

Here @ IS a scalar function of the Invariants of tensor ’ Eij and 1s a 

stress potential. 

As regards the internal forces resisting plastic deformation, they may be 

divided into the following three categories. 
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a) Dissipative forces (- T,, ) averaged with respect to elementary volume 

V , having the character of dry friction, and thus connected with macroscopic 

plastic deformations E$J by JQuatlon (1.1). 
b) Elastic mlcrostresses, caused by plastic deformation, determined by 

It and vanishing with It. The macroscopic tensor corresponding to them 

shall be designated by sU , 
c) Microscopic forces of the dry friction type. The tensor of these 

stresses at each point Inside the Isolated volume V Is tangent to the local 

trajectory of plastic deformation (to the mlcrotrajectory) from which, how- 

ever, It does not follow that the corresponding macroscopic tensor (-p,, ) 
Is directed along the tangent to the trajectory of macroscoPlc plastic defor- 

mations &llP * It may have, generally speaking, also another direction. 

On the basis of what was said above 

Hence 

Tij = 0; = Sij - Sij - pij 

The work of stresses sl, on a closed cycle of plastic deformations, as 

was Indicated above, Is equal to zero. In view of this 

where Y is a function of plastic deformations ~~9. 

The tensor .gi3 was Introduced earlier: It Is present In all versions of 

theory of flow, which take Into account anisotropic hardening. It was called 

tensor of mlcrostresses for the first time In paper [4]. 

The reasoning presented above clarifies the meaning of this macroscopic 

tensor and the justification for its designation. However, from this reason- 

ing 1t Is also Implied that besides the tensor si, , representing mlcrostres- 

(4.3) 

a’y 
Sij = p 

aeij (4,5) 

sea, which do work on elastic mlcrodeformatlons, on the same footing also 

the tensor P,, should appear, which Is the representative of mlcrostresses 

doing work In plastic mlcrodeformatlons. Until now the term S,, , apparently, 
was not taken Into account, although In all probability contributions to 

specific work of deformation of s,, and Pi, are approximately equal. If 

PI, Is not taken Into account, then we are lead to the theory of flow with 

moving and, possibly, expanding boundary of the region of elastic deforma- 

tions. The coordinates of the center of this region will be the components 

of the tensor sl, . The deficiency of this theory, which was called to 

author's attention by A.A. Vakulenko, Is that It leads to the conclusion that 

as a result of cyclic deformation, closed with respect to stresses and also 

with resect to deformations, the materlal again becJ,lles lnltlally Isotropic, 

which Is, generally speaking, not In agreement with experiments. 

The experiments Indicate that after a deformation, closed with respect to 
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both stresses and deformations in the body, as a rule, deformational aniso- 

tropy is retained. Thereby the center of the region of elastic deformations 

is displaced along some tensor trajectory, not reaching its Initial position, 

which Is an argument in favor of the necessity of retaining in Equation (4.4), 

In addition to eI, , also the second term p,, , which, being representative 

of microstresses doing work in plastic microdeformations, does not vanish in 

a closed cycle of macroscopic deformation. 

Since the coordinates of the center of the region of elastic deformations 

are defined by the tensor c$$* = sij -t pij, then the retaining of pii in Eoua- 

tion (4.4) guarantees the possibility of describing the deformational aniso- 

tropy, remaining in the body under cyclic deformations, closed with respect 

to both stresses and deformations. 

The tensor e,J , as was already mentioned, is related to the macroscopic 

plastic deformations E,J by the finite relations (4.5). As regards pi, , 
then even though it should be related to plastic deformations, this relation, 

however, must have the form of nonintegrable differential relationships (in 

view of the dissipative character of forces, corresponding to p,, ). 

The direction, along which the form of the Indicated relations must be 

sought Is intimated by the already mentioned experimental fact, according to 

which the center of the region of elastic deformations followlng.the plastic 

deformations is somewhat lagging In their evolution. But the same character- 

istics, as is well known, are exhibited by the tensor of plastic deformations 

with respect to the stress tensor. 

Hence there are reasons to look for relationship between p,, and the 

plastic deformations E,,~ In the form 

Here x 1s a function of T . The latter follows from the fact that in 

the absence of increment of plastic deformations the tensor p,, must remain 

constant. 

The author does not assert that the form of the relationship between P,, 

and cl{ (4.6) is optimum from the point of view of the possibility of decrea- 

sing the discrepancy of theory and experiments, but this, apparently, is the 

simplest among possible conjectures. In the final analysis it Is precisely 

the experiment which must prompt the most rational choice of a relation 

between pi, and cl: . 

3. The indicated avenues of refining the theory of flow, being strength- 
ened by systematic experiments,allow Its perfection in the direction of 
Improved description of anisotropic hardening, the external appearance of 
which Is the Bauschinger effect. 

This will give one the possibility to successfully apply the theory to 
more complicated loading and deformation paths, than it is possible to do 
now. But the most important posslbllty which can be expected from the indi- 
cated development of the theory of flow Is the possibility of Investigating 



494 V.V. Novozhllov 

certain properties of microstresses, 
polycrystals. 

arising from the plastic deformation of 
In metallurgical science the role of microstresses has been 

considered significant already for a long time. They are looked upon as the 
cause which induces mlcrocracks In the material and their subsequent develop- 
ment. 

At Present that physical theory of internal microstresses is being success- 
fully developed, which is based on contemporary models of the real structure 
of solld bodies and which rests on the apparatus of dislocation theory. 
Attempts are being made to study microstresses and microdeformations by dlf- 
ferent contemporary methods of experimental physics, In particular, by 
methods using X-rays. 

Without in the least rejecting all these directions in a study of mlcro- 
stresses and microdeformations, we call attention here to still another (and 
most simple) possibility, namely, the possibility of studying microstresses 
within the framework of the phenOmenOlGgiCa1 theory of plasticity. 

It is found that microstresses send their representative Into the wrmrld 
of macroscopic phenomena, observed In strength of materials laboratories on 
well-known and wide-spread testing machines. Such a representative is the 
macroscopic tensor +* whose work in averaged deformations is equal to 
the work of microstr%se~ In microdeformations The indicated fundamental 
property of ui,**, as well as some assumptlons'based on experimental data, 
permit its fairly rigorous determination by means of its Influence on the 
pattern of macroscopic deformation. The use of this tensor, which should 
have been called ntensor of external appearance of mlcrostresseSn, if this 
name would not be too long, permits one to constitute an averaged (in some 
sense) representation of the pattern of microstresses and of Its dependence 
on the loading path. 

One may object that such averaged reDreSentatiOn iS insufficient. Since 
it does not in any way estimate tEe maximum,value of mlcrostresses.WBesides, 
In view of considerable nonuniformity o_ the field of microstresses, their 
deviations of maximum value from averaged values may be very large. This 
observation Is completely true. The phenomenologlcal approach does not give 
and, obviously, cannot in principle give estimates of the limits of fluctu- 
ation of microstresses, which Is a serious deficiency. However, even the 
averaged characteristics of microstresses represent an unquestionable inter- 
est. In particular they allow one to obtain an estimate of the Work, per- 
formed by microstresses as a function of the loading path and of latent elas- 
tic energy. accumulated In the body. If the origin of mlcrocracks is caused, 
apparent&; by maximum value of microstresses, then the subsequent develop- 
ment of an already formed crack may, possibly, depend mainly on the averaged 
elastic energy of-microstresses. 

But even if one adopts the most cautious and most disadvantageous assump- 
tion for the phenomenologlcal description of microstresses, namely that the 
averaged pattern does not give immediate possibility to estimate the criteria 
of strength of materials for complex loading, ever then the given direction 
must be fGllowed as an auxiliary method of study df microstresses, supplemen- 
ting other (physicsl) methods of their study. Indeed, when finally a suffi- 
ciently worked out physical theory will be developed, allowing to conclrler 
not only averaged characteristics of microstresses, but also bounds of their 
fluctuations, then on the basis of this theory one should be able to deduce, 
in particular, equations tking Into account the influence Gf microstresses 
on the pattern of microscopic deformations. The given formulas, In their 
structure will, undoubtedly, be similar to those, which were given above, 
and the degree of their Coincidence with experiments will allow to judge the 
degree of accuracy of the developed theory. 

Therefore one should not discard the possibilities of the phenGmenGlGgiCa1 
approach, allowing to obtain some (even if incomplete) information concerning 
the world of microstr+sses, which is still hidden from us, on the basis of 
conventional mechanical testing of specimens, i.e. by means of an experiment 

which Is simple and well developed. 
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