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1, In inelastic rigid bodies the relation between stress and deformation
in each moment of the process of deformation inevitably depends on the whole
sequence of events in this process, or, as one says, on "the loading path”.
In view of the variety of rheological properties for rigild bodies, it seems
to be unrealistic to originate a common theory, covering all possible cases.
Therefore, in this paper the question will be raised only about the most
significant version of the theory of complex loading, relating to bodies
which possess initlial isotropy and in which forces, resisting plastic defor-
mation, do not depend on time.

With certain l1dealizations {(see below) such a theory, which obtained the
name theory of flow [plasticity], 1is suitable for many metals and their
alloys at moderate temperatures. The independence of dissipating forces.
arising from plastic deformation, on time in essence implies that these for-
ces are of the nature of dry friction.

The fundamental feature of the force of friction as it acts cn a moving
particle 1s that it always acts along the tangent to the trajectory of motion
in a direction opposite to the velocity. This property of frictlon deter-
mines the tensor structure of relation between stress and deformation in the
theory of flow and assumes the form

c‘!’&‘{f' o P— , s
Tij= T *;;‘;j]‘ ) dh == Va’s{; del’s T =V TT;; (1.1)

*#)} From a paper at thc Second All Union Congress of Theoretical and Applied
Mechanics.
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Here e}, is the plastic deformation tensor {which in the following will
be kiown a8 the “deviator™ if we assume that the body is plastically incom-
pressible}; 7T,, is the tensor ("deviator®) for dissipation forces of piastic
resistance. Equations (1.1) express the conditlon of tangency to the tra-
Jectory of the plastic deformation by the dlssipation forces tensor, while
resisting plastic deformation.

If we assume that there are no other forces resisting plastic deformation
except T,, and that the friction is constant along the trajectory of defor-
mation, i.e. what the invariant 7 = 7, = const, then Ty, 1s necessarily
identified with the atress "deviator” g¢f, and then (1.1) becomes the most
elementary theory of {low-theory of Reuss. If we retain the assumption that
the resistance of plastic deformation is of purely dissipative character,
but consider that the friction I depends on the position of points on the
trajectory of deformation, then we are lead to the theory of flow with iso-
tropic hardenirg [1].

However, 1t 1s not 8t all necessary to suppose that the resistance to
plastlce deformation has an entirely dissipative character., In the process
of plastic deformatlon internal elastic foreces of resistance can arise as a
consequence of its lrregularity. We denote the tensor of the external effect
of this force by g,;. In this case the tensor of forces of dissipation may
be expressed by Equatlon

Ty = oy’ — s (1.2)

If we assume that g,,” are connected with e, by & iinear relationship,
analogous to Hooke's law, and that T = T, we obtain from (1.1) the elemen-
tary varient relating to the translatlonal theory of flow which 1s sometimes
known as the theory wlth an ideal Bauschinger effect. The last theory may
be generalized, if we relinquish the assumption that 7T 1is constant along
the trajectory of deformation [2 to #]. As 1s cbvious, an intultive repre-
sentation of dissipative forces, resisting plastic deformation in the basis
of the Lheory of flow, is assumed as in the case of forces of dry friction.
This finds 1ts mathematical expression in the reguirement of tangency of the
tensor of dissipation forces T,, to the trajectory of plastic deformation,
and also in the requirement of independence of this btensor of the time of

deformation.

The indicated versions of theory of flow generate the trend In the theory
of plasticity, which should be called the fundamehtal one, even though, cer-
tainly, they do nct exhaust all the wealth of ldeas suggested by different
authors for description of deformation processes of initially lsotroplc

inelastic bodies.

Experimental evidence to test different versions of the theory of flow
is very extensive and its data are in general favorable for the theory (see,
for example, [5 and 6]), Even its simplest veralons, as a rule, colnclde
satisfactorily with experiments. Translational theorles which take into
account the Bauschinger effect, give a notlceable accuracy only for essen-
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tially complex loading paths (for example, for passing around the region of
elastic deformations or changing the signs of the loading). However, in dis-
cussing the colncidence of predlctlons of theory of flow with experiment
data, it 1s necessary to note that the extent of validity of these assertions
depends on assumptions with which the plastic deformations are measured (i.e.
on their smallest value, beginning with which we agree to observe them).

In this respect the works of Iagn and his followers {7 and 8] are typical,
in which it was established that for very small assumptions for plastic defor-
mation (of order 0.001%) not only very simple but even very complex forms
among the suggested versions of the theory of flow do not glve accurate
representation of the features of plastic deformation. Under these assump-
tions the boundary of elastic deformations has a complicated form, changing
essentially in the process of deformation. As the assumption 1s extended
the observed pattern 1s beginning to become simplified and for assumption
of order 0.05% come close to the fundamental predictions of versions of the
theory of flow. For subsequent increase of assumptlion again a deviation of
theory from experiment begins to occur, Thus, for example, in the theory of
fiow {and in the theory of plasticity in general) it is asserted that if,
beginning with some active loading, unloading and then once again loading
occurs, then the new flow limit will be that maximum stress g¢,, which was
reached in the process of loading. 1ln experiments, however, if we admit large
assumption (of order 0.2%, which 1s generally accepted in engineering) we
find that the yleld stress for repeated loading is somewhat larger than o, .
Conversely, if we consider small assumption (of order 0.01% or still smaller),
then the yleld stress for repeated loading is shown to be below ¢, . There-
fore, 1f we speak of a good agreement of theory of flow with experlment it
1s necessary without fail to add that it occurs only for sufficlently rough
processing of experimental data.

Hence, it follows that under the differentials in formulas of flow, as a
matter of fact, one must imply finite lncrements of deformation of the order
of such tolerances, from which assumptlons lying at the basis of a theory
are justifled. The last does not interfere with the validity of the theory
of flow to predict the general plcture of the dependence of the trajectories
of deformation on the loading trajectories, but it is not able to include
local effects in the lmmediate proximlity of sharp changes of the direction
of loading. Insufficient accuracy of the theory of flow in the description
of quantities, changing rapidly within relatively small changes of plastic
deformation, probably, 1s the maln cause of its inadequacy in connection
with problems of stability of equililbrium of elastic plastic bodles. As 1is
well known [9 and 10], for the problem area better coincidence with experi-~
ment is given by the theory of small plastic deformations. Why this is so
i1s difficult to say, but one thing 1s evident — there 1is no reason to be
astonished by the discrepancy of the flow theory and experiments in the area
of stability of equilibrlum of elastlic plastic bodies.

2. Although in the description of the general picture of plastic defor-
mation in the theory of flow already has achieved conslderable success,
nevertheless its perfectlion should be contlnued as with the goal of further
approaching theoretical results with experiments in respect to prediction of
the deformation curve form representation of the loading curve, as in particu-
lar with the purpose of studylng mlcrodeformation and microstresses arising
in bodles from their elastic-plastic deformation. The appearance of these
microdeformations and microstresses depends on microscopic nonhomogeneous
elastic and plastic properties of polycrystals, and also on the imperfections
in the ‘structure of their crystal lattice polnts, 1l.e. dislocations. In the
theory of elasticity and theory of plasticity stress and deformation are
usually averaged in the limits of elemental volumes containing sufficiently
large number of crystal lattice poilnts, and a relation between averaged
stresses and averaged deformations are established. These stresses and
deformations in the sequel will be called macroscopilc.

However, for formulation of a law for this relation we cannot avoid to
deal with microscoplc nonhomogeneity of stress and deformation fleld, since
the work accomplished by self-equillbrating microstresses in correspondence
to their microdeformations 1s comparable with the work of averaged stresses
on averaged deformations., Particularly typlcal of this are examples of
numerous experiments for the measure of heat, evolved during macroscopic
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homogeneous deformation ([11 and 12] and others). The comparison of the work
corresponding to this heat with the work expended on the plastic deformation
shows that the mechanlcal equivalent of heat evolved 1s always appreciably
lower than the expended work (by 5 — 8% , depending on magnitude of defor-
mation}. From this 1t follows that in a homogeneously deformed elastic-
plastic body after removal of all its stresses there remains an elastic field
of deformations and corresponding to 1t a field of residual stresses, the
appearance of which may be explained only by microscopic lnhomogeneity of
mechanical properties of the body.

To thls one should add that for homogeneous macrostresses and macrodefor-
mations 1n experiments with specimens beyond the yleld stress, there undoubt-
edly arise not only elastic but also plastic nonhomogeneous microdeformations
which in experiments of the type [11 and 12] are not detected, but for which
1s expended work epparently comparable in magnitude with the work expended
for elastic residual microdeformations, so that in realty from all the work
expended on-plastic deformation of the body, probably not less than 10 — 15%
may be due at the expense of selfequilibrating microstresses and their cor-
responding microdeformations.

3, Work expended in microdeformations is found to be comparable with work
expended in averaged deformations. This property allows the introduction of
the macroscoplc tensor, which is the statistical characterlstic of micro-
stresses and permits one to conslder the influence of the latter in the rela-
tionship between macroscopic stresses and deformations.

We conslder a sufficiently small, but finite volume element of a polycrys-
talline body containing a large number of crystalline lattice points. The
work required for a change of deformation of this volume element, relative
to the unity of its volume, 1s expressed by Equation

dR = 1 {0, de;dv
— —V—SO'U &3 (3.1)
in which the integral 1s extended to include all volume of the element. We
assume stresses and deformations in the form

— g * a0 3
0ij = 035 + 03, &ij = &5 4~ &f (3.2)
Here g¢,p and ¢,? are constant tensors in the limits of the volume ele-

ment und.. consideration, they are equal in value to the average stresses

and deformations
° 1¢ o 1
o= \oudV,  e5=-|esav (3.3)
As regards o* and ¢,f%, their integrals in the limits of the volume
element are equal zero

go’{}dV = Ss?}dV = (3.4
Substituting (3.2) in {3.1) and considering (3.4) we arrive at Equation
dR = dR°® + dR* = o;des -+ -f,—%g;‘;-de;’;-dv (3.5)

In this equation the first term on the right-hand side 1s the work of the
averaged stresses on the increments of averaged deformations, and the second
1s the work of selfequilibrating stresses on the increments of deformations
corresponding to them. For microinhomogeneous elastic and plastic propertles
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of bodles the second integral always differs from zero. We cannot, as was
already indicated, neglect it.

For volume elements containing a sufficlently large number of crystalline
lattice points; the work of selfequilibrating stresses, relative to unit
volume ¢AR*, should be considered independent on both the shape and the size
of the element, 1.e. the second term of Equation (3.5), for given oi; 85,
and dS; and for glven sequence of events in loading, 1s for every body a
definite quantity, characterizing its microstructure, Let us introduce a
symmetric macroscopic tensor of the second rank, having measurement dimen-
sions of stress, connecting it with dR* by the equality

dR* = of* de;; (3.6)

The fundamental property of the given tensor, arising from (3.5) and (3.6),
consists 1n that the specific work done by it on increments of macroscopic
deformations 1s equal to the speciflc work of all microstresses on the micro-
deformations corresponding to them. Formula (3.6), it is understood, does
not determine completely o,}*. However, 1t shows that such a tensor may be
introduced and that 1t always differs from zero. Below, on the basis of a
series of physical arguments, are indicated means to its concrete definition.

Substituting (3.6) into (3.5) we obtain Equation
o [+] -]
dR = (0i; + of*) dey; = Sijde;; (3.7
Thus, 1in the expresslon for increment of specific work of deformation of

polycrystalline material, along with averaged stresses g¢,°, there enters
also the macroscopic tensor ¢,%* which accounts for microstresses.

4, Let us divide now, as is usual, the macroscopic deformation into its
elastic and plastic parts (g; = & + &).

Then
dR = Sy (def + del) (4.1)

In accordance with this equation, the stresses §,, applled to volume
element of the body from outside, overcome the internal forces resisting
elastic deformation, as well as those resisting plastic deformation. Since
Sy do the work in increments of elastic deformations 1t follows (if 1t 1s
assumed that elastic deformations do not depend on the path of .loading) that

Sij = 828‘11 (4.2)
ij

Here (D 1s a scalar function of the invariants of tensor 85 and is a
stress potential.

As regards the internal forces resisting plastic deformation, they may be
divided into the following three categories.
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a) Dissipative forces (— 7,, ) averaged with respect to elementary volume
vV » having the character of dry friction, and thus connected with macroscopic
plastic deformations e,f by Equation (1.1).

b) Elastic microstresses, caused by plastic deformation, determined by
it and vanishing with it. The macroscopic tensor corresponding to them
shall be designated by 8y

¢) Microscopic forces of the dry friction type. The tensor of these
stresses at each point inside the 1solated volume ¥ 1s tangent to the local
trajectory of plastic deformation (to the microtrajectory) from which, how-
ever, 1t does not follow that the corresponding macroscopic tensor (— p,, )
is directed along the tangent to the trajectory of macroscopic plastic defor-
mations e,f. It may have, generally speaking, also another direction.

On the basls of what was sald above

— a. *k
Sy = 045 + of* =Ty + s;; + py (4.3)
Hence
]
Ty = o = Sij — sij — pij (4.4)
The work of stresses 8,, on a closed cycle of plastic deformations, as
was indicated above, is equal to zero. In view of this
oY
TP
68ij

where Y 1s a function of plastic deformations e,°.

Sij

The tensor g,, was introduced earller: 1t 1s present in all versions of
theory of flow, which take into account anisotropic hardening. It was called
tensor of mlcrostresses for the first time in paper [4].

The reasoning presented above clarifies the meaning of this macroscopic
tensor and the justification for its designatlion. However, from this reason-
ing it is also implied that besides the tensor g, , representing microstres-
ses, which do work on elastlic microdeformations, on the same footing also
the tensor p, should appear, which 1s the representative of microstresses
doing work in plastic microdeformations. Until now the term S,, , apparently,
was not taken into account, although in all probabllity contributions to
specific work of deformation of s,, and p,, are approximately equal. If
py; 18 not taken into account, then we are lead to the theory of flow with
moving and, possibly, expanding boundary of the region of elastic deforma-
tions. The coordinates of the center of this region will be the components
of the tensor g, . The deflciency of thls theory, which was called to
author's attention by A.A. Vakulenko, is that 1t leads to the concluslon that
as a result of cyclic deformation, closed with respect to stresses and also
with resect to deformations, the material again becoues initially isotropilec,
which 1s, generally speaking, not in agreement with experiments.

The experiments indicate that after a deformation, closed with respect to
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both stresses and deformations in the body, as a rule, deformational aniso-
tropy 1is retained. Thereby the center of the region of elastic deformations
is displaced along some tensor trajectory, not reaching its initial position,
which is an argument in favor of the necessity of retaining in Equation (4.%),
in addition to s8,;, also the second term p, , which, being representative
of microstresses doing work in plastic microdeformations, does not vanish in
a closed cycle of macroscoplc deformation.

Since the coordinates of the center of the region of elastic deformations
are defined by the tensor 0%* = &j—% Pij, then the retaining of Dij in Equa-
tion (4.4) guarantees the possibility of describing the deformational aniso-
tropy, remaining in the body under cyclic deformatlions, closed with respect
to both stresses and deformations.

The tensor g, , 8s was already mentioned, 1s related to the macroscoplc
plastic deformations ¢,} by the finite relations (4.5). As regards p,, ,
then even though it should be related to plastic deformatlons, this relation,
however, must have the form of nonintegrable differentlal relationships (in
view of the dissipative character of forces, corresponding to p,, ).

The direction, along which the form of the indicated relations must be
sought is intimated by the already mentioned experimental fact, according to
which the center of the region of elastic deformations followilng the plastic
deformations is somewhat lagging in thelr evolution. But the same character-
istiecs, as 1s well known, are exhibited by the tensor of plastic deformations
with respect to the stress tensor.

Hence there are reasons to look for relationship between p,, and the
plastic deformations ¢’ in the form

dpi; = & dy, (4.6)

Here y 13 a function of T . The latter follows from the fact that in
the absence of increment of plastic deformations the tensor p,, must remaln
constant.

The author does not assert that the form of the relatlionship between P2,
and ¢,f (4.6) 1s optimum from the point of view of the possibility of decrea-
sing the discrepancy of theory and experiments, but this, apparently, 1s the
simplest among possible conjectures. In the final analysls 1t 1s precisely
the experiment which must prompt the most rational cholce of a relation
between p, and ¢, .

5. The indicated avenues of refining the theory of flow, belng strength-
ened by systematic experiments,allow 1ts perfection in the directlon of
improved description of anisotropic hardening, the external appearance of
which 1s the Bauschinger effect.

This will give one the possibility to successfully apply the theory to
more complicated loading and deformation paths, than 1t 1s possilible to do
now. But the most important posslblity which can be expected from the 1ndi-
cated development of the theory of flow is the possibillity of investigating



4oy V.V. Novozhilov

certain properties of microstresses, arising from the plastic deformation of
polycrystals., In metallurglcal science the role of microstresses has been
considered significant already for a long time. They are looked upon as the

cau:e which Induces microcracks in the material and thelr subsequent develop-
ment .

At present that physical theory of internal microstresses is being success-
fully developed, which 1s based on contemporary models of the real structure
of s80lld bodies and which rests on the apparatus of dislocation theory.
Attempts are being made tc study microstresses and microdeformations by dif-
ferent contemporary methods of experimental physics, in particular, by
methods using X-rays.

Without in the least rejecting all these directions in a study of micro-
stresses and microdeformations, we call attentlon here to still another (and
most simple) possibility, namely, the possibllity of studying microstresses
within the framework of the phenomenological theory of plasticity.

It is found that microstresses send their representative into the wcrld
of macroscoplc phenomena, observed in strength of materlals laboratories on
well-known and wide-spread testing machines. Such a representative 1s the
macroscoplc tensor o,**, whose work in averaged deformations 1s equal to
the work of microstresses in microdeformations. The indicated fundamental
property of °u**’ as well as some assumptions based on experimental data,
permit its falrly rigorous determination by means of 1ts influence on the
pattern of macroscoplc deformation. The use of this tensor, which should
have been called "tensor of external appearance of microstresses™, if this
name would not be too long, permits one to constitute an averaged (in some
sense) representation of the pattern of microstresses and of 1ts dependence
on the loadling path.

One may object that such averaged representation is insufficient, since
it does not in any way estimate the maximum value of microstresses. Besldes,
in view of considerable nonuniformity o. the fleld of microstresses, their
deviations of maximum value from averaged values may be very large. This
observation is completely true. The phenomenologlcal approach does not give
and, obviously, cannot in principle give estimates of the limits of fluctu-
ation of microstresses, which is a serious deflclency. However, even the
averaged characteristics of microstresses represent an unquestionable inter-
est. In particular they allow one to obtain an estimate of the work, bper-
formed by microstresses as a function of the loading path and of latent elas-
tic energy, accumulated in the body. If the origln of mlcrocracks is caused,
apparently, by maximum value of microstresses, then the subsequent develop-
ment of an already formed crack may, possibly, depend mainly on the averaged
elastic energy of microstresses.

But even if one adopts the most cautlious and most disadvantageous assump-
tion for the phenomenological description of mlcrostresses, namely that the
averaged pattern does not give immedlate possibility to estimate the criteria
of strength of materials for complex loading, ever then the given direction
must be followed as an auxiliary method of study of microstresses, supplemen-
ting other (physlcal) methods of their study. Indeed, when finally a suffi-
ciently worked out physical theory will be developed, allowing to consiner
not only averaged characteristics of microstresses, but also bounds of their
fluctuations, then on the basis of this theory one should be able to deduce,
in particular, equations tking into account the influence of mlcrostresses
on the pattern of microscoplc deformations. The given formulas, in their
structure will, undoubtedly, be similar to those, which were given above,
and the degree of thelr coincidence with experiments will allow to Judge the
degree of accuracy of the developed theory.

Therefore one should not discard the possibilities of the phenomenclogical
approach, allowing to obtain some (even if incomplete) information concerning
the world of microstresses, which is still hidden from us, on the basis of
conventional mechanical testing of specimens, i.e. by means of an experiment
which 1s simple and well developed.
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